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1 Introduction
In the actual investment environment, it is found

that interest rate is generally not fixed but dynamical-
ly changing, which can be delineated by some term
structure models. The Ho-lee model [1] and the Va-
sicek model [2], which were used to describe the short
term structure of interest rate, are the most important
mathematical models. Recently, many scholars have
investigated dynamic portfolio problems with stochas-
tic interest rate, and obtained some instructive result-
s. For example, using the stochastic optimal control
theory, Korn and Kraft [3] studied the dynamic port-
folio problem under the Ho-Lee model and the Va-
sicek model, and got the close-form expressions of
the optimal investment strategies under power utility
function. In addition, the verification theorem which
verifies that a solution of the HJB equation is actu-
ally the optimal solution to the original optimization
problem is presented, and laid a theoretical foundation
for dynamic portfolio theory with stochastic interest
rate. Fleming and Pang [4] focused on an investment

and consumption problem under the Vasicek model,
and proved the existence of the solution to the HJB
equation by employing the sup-subsolution method,
but the explicit expression of the optimal investment
and consumption strategy is not given. Gao [5] inves-
tigated the pension fund problem in an affine interest
rate framework and used a Legendre transform to ob-
tain the explicit solutions to optimal investment strate-
gies with logarithmic preference. Further, Noh and
Kim [6] discussed the investment and consumption
problem with stochastic interest rate and the stochas-
tic volatility, but they didn’t get the explicit solution
of the optimal investment and consumption strategy.
For more detailed models, some interested reader can
refer to the works of Chang and Rong [7], Guan and
Liang [8-9], Chang et al. [10], Zhang et al. [11], Liu
et al. [12]. These models have greatly expanded the
portfolio theory with stochastic interest rate. But they
don’t consider the factor that financial institutions or
investors may be in debt in the process of investmen-
t. As a matter of fact, introducing the liability into
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the portfolio selection problems and investigating the
optimal portfolio in the stochastic interest rate envi-
ronments will be more practice.

It is well known that lots of financial institution-
s were often confronted with some liabilities in the
process of investment, such as banks, insurance com-
panies. The existence of the liability has certain effect
on the investment strategies of financial institutions.
In recent years, some scholars have studied the portfo-
lio problems with random liability, and obtained some
valuable results. Sharpe and Tint [13] established the
mean-variance model with liability, and analyzed the
optimal investment strategy and the relationship be-
tween return and risk. Browne [14] first studied the in-
vestment problem of insurance fund, and the optimal
investment strategies for the insurers under maximiz-
ing exponential utility and minimizing the probabili-
ty of bankruptcy were obtained. Leippold et al. [15]
considered an asset-liability management problem in
a muilt-period environment, and analyzed the impacts
of liability on the optimal investment strategy and the
characteristics of effective frontiers. Chiu and Li [16]
got the optimal investment strategy in the continuous-
time mean-variance framework and the explicit ex-
pression of the efficient frontier by applying stochas-
tic linear-quadratic control method, where the liabil-
ity process is driven by classical geometric Browni-
an motion. Xie et al. [17] assumed that the liability
process is modeled by Brownian motion with a drift,
and obtained the explicit solutions to the optimal in-
vestment strategy and the effective frontier, and ana-
lyzed the impacts of liability. Chen et al. [18] consid-
ered the management problem of asset-liability with
regime-switching, and obtained the explicit expres-
sions of the optimal investment strategy and the ef-
fective frontier. These models investigated the asset-
liability management problems under different invest-
ment environments, and provided the theoretical ba-
sis for asset hedging and risk controlling in the liabil-
ity settings. But these results have a drawback that
these research results are obtained under the assump-
tion of constant interest rate or particular investment
constraints. It is more clear that investigating ALM
problems with stochastic interest rate is of important
academic value and broad prospect of application.

Mean-variance criterion is one of most importan-
t criteria in the portfolio selection theory. Howev-
er, limitations of research methods greatly limited re-
search progress of mean-variance models for a long
time. Until 2000, Li and Ng [19] first presented a bed-
ding technique and successfully solved a multi-period
mean-variance model. This attracted some attentions
of researchers and greatly promoted research progress
on mean-variance models. Later, some scholars en-
riched and extended this technique and put forward

some new methods to solve the mean-variance mod-
els. For example, Zhou and Li [20] presented a s-
tochastic linear-quadratic(LQ) control method to deal
with a continuous-time mean-variance model and ob-
tained the closed-form solutions to the efficient strat-
egy and the effective frontier. Li et al. [21] and Fu et
al. [22] used the LQ technique and Lagrange duality
theorem together to tackle the mean-variance model
with constrains. Ferland and watier [23] and Shen et
al. [24] used backward stochastic differential equation
(BSDE) theory to solve the mean-variance model with
stochastic market coefficients. But, if introducing li-
ability process into above mentioned mean-variance
models, above methods have some limitations and d-
ifficulties. Considering that the optimal portfolios un-
der quadratic utility is mean-variance effective and
may pave the way for solving mean-variance model,
in this paper we devote ourselves to solving an ALM
problem with stochastic interest rate in the quadratic
utility framework.

Based on the works of Korn and Kraft [3], Xie et
al.[17] and Zhou and Li [20], we introduce liabili-
ty process into a continuous-time portfolio selection
problem with stochastic interest rate and extend the re-
lationship between liability dynamics and stock price
dynamics to a general correlation coefficient. The fi-
nancial market consists of one risk-free asset and mul-
tiple risky assets, where short rate is driven by the
Ho-Lee model or the Vasicek model, and interest rate
dynamics is generally linearly correlated with stock
price dynamics. We study the optimal investment s-
trategy under quadratic utility and obtain the explic-
it expressions of optimal investment strategies by ap-
plying dynamic programming principle and Legendre
transform. Finally, a numerical example is provided
to analyze the impact of market parameters on the op-
timal investment strategies, especially the liability pa-
rameters and interest rate parameters.

The rest of this paper is organized as follows. Sec-
tion 2 presents the problem formulation of this paper.
Section 3 uses the principle of stochastic dynamic pro-
gramming to derive the HJB equation for the value
function and applies Legendre transform to transfor-
m the original HJB equation into its dual equation.
The explicit expressions of the optimal policies are
obtained in Section 4. Section 5 gives a numerical
illustration and Section 6 concludes the paper.

2 The model

The financial market, wealth process, liability pro-
cess and optimization criterion are given in this sec-
tion. Notation assumptions are as follows.

(·)′ represents the transpose of a matrix or a
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vector, and [0, T ] stands for finite fixed investmen-
t horizon, and E(·) is the mathematical expectation.
∥x∥ =

√
x′x =

√
x21 + x22 + · · ·+ x2n represents

the norm of the vector x = (x1, x2, · · · , xn)′, and
(W1(t),W2(t), · · · ,Wn(t))

′ is the n-dimension inde-
pendent and standard Brownian motion defined on the
complete probability space (Ω,F ,P, {Ft}06t6T ),
where {Ft}06t6T can be interpreted as the informa-
tion available at time t. Supposed that the financial
market is composed of one risk-free asset and multi-
ple risky assets.

One risk-free asset is interpreted as a bank account,
whose price at time t is denoted by P0(t), Then P0(t)
evolves according to the following equation

dP0(t) = r(t)P0(t)dt, P0(0) = 1, (1)

where r(t) is interest rate.
In this paper, we assume that r(t) is a stochastic

process satisfying the following term structure of in-
terest rate

dr(t) = a(t)dt+ bdWr(t), r(0) = r0 > 0, (2)

where a(t) is the bounded function of time t, and b >
0 is a constant. Wr(t) is a one-dimension standard
Brownian motion defined on (Ω,F ,P, {Ft}06t6T ).
If a(t) is the function only about time t and is irrele-
vant to the interest rate r(t), the equation (2) is called
the Ho-Lee model. Assumed that a(t) can be written
as a(t) = k(α − r(t)), where k and α are constants,
the equation (2) is known as the Vasicek model.

Multiple risky assets are taken as the stocks, whose
price of the ith stock at time t is denoted by Pi(t),
i = 1, 2, · · · , n. Then the dynamics behavior of price
process Pi(t) can be described by the following geo-
metric Brownian motion:

dPi(t) = Pi(t)

(µi + r(t))dt+

n∑
j=1

σijdWj(t)

 ,

Pi(0) = pi > 0,

(3)

where µ = (µ1, µ2, · · · , µn)
′ represents the appreci-

ate rate vector of the stock. In addition, σ = (σij)n×n

represents the volatility matrix of the stock. Suppose
that µ and σ are bounded constants, which are Ft−
measurable on the time horizon [0, T ], and satisfy the
non-degeneracy condition: σσ′ > 0 , ∀t ∈ [0, T ].

Suppose that an investor is equipped with an ini-
tial endowment w0 > 0 and an initial liability l0 > 0
at time t = 0 , then the net initial wealth of an in-
vestor is x0 = w0− l0. Suppose that the accumulative
liability at time t is denoted by L(t), then L(t) can

be described by the following Brownian motion with
drift:

dL(t) = udt+ vdWL(t), L(0) = l0 > 0, (4)

where u > 0 and v > 0 are constants, and WL(t) is a
one-dimension standard Brownian motion defined on
(Ω,F ,P, {Ft}06t6T ).

In the process of the actual investment, the volatil-
ity of interest rate has some effect on the price of the
stock, and the liability behavior of financial institu-
tions also has some impact on the price of the stock.
In this paper, we assume that interest rate process and
the liability process are all generally correlated with
the price of the stock. Suppose that the correlation co-
efficient between the volatility source of interest rate
Wr(t) and the volatility source of stock price Wi(t)
is denoted by ρi, and the correlation coefficient be-
tween the volatility source of the liability WL(t) and
Wi(t) is denoted by λi, then Wr(t) and WL(t) can be
expressed as:

Wr(t) =
n∑

i=1

ρiWi(t) +

√
1− ∥ρ∥2W̃r(t),

WL(t) =

n∑
i=1

λiWi(t) +

√
1− ∥λ∥2W̃L(t),

where, W̃r(t) and W̃L(t) are two one-dimension in-
dependent and standard Brownian motions defined on
(Ω,F ,P, {Ft}06t6T ).

Letting ρ = (ρ1, ρ2, · · · , ρn)′, λ = (λ1, · · · , λn)
′,

W (t) = (W1(t),W2(t), · · · ,Wn(t))
′, and W (t) is

independent of W̃r(t) and W̃L(t), then the interest
rate process (2) and the liability process (4) can be
written as

dr(t) = a(t)dt+ bρ′dW (t) + b

√
1− ∥ρ∥2dW̃r(t),

r(0) = r0 > 0;

(5)

dL(t) = udt+ vλ′dW (t) + v

√
1− ∥λ∥2dW̃L(t),

L(0) = l0 > 0.

(6)

Assume that an investor has the net initial wealth
x0 > 0 at initial time t = 0, and the amount of in-
vested in the ith stock at time t is denoted by πi(t),
i = 1, 2, · · · , n, then the amount invested in the risk-

free asset is given by π0(t) = X(t)−
n∑

i=1
πi(t), where

X(t) represents the net wealth of an investor at time
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t. Letting π(t) = (π1(t), π2(t), · · · , πn(t))′, then the
net wealth process satisfies

dX(t) =(X(t)−
n∑

i=1

πi(t))
dP0(t)

P0(t)

+
n∑

i=1

πi(t)
dPi(t)

Pi(t)
− dL(t).

Taking the equation (1), (3) and (6) into consideration,
we can get

dX(t) =

(
r(t)X(t) + π′(t)µ̄− u

)
dt+

(
π′(t)σ

− vλ′
)
dW (t)− v

√
1− ∥λ∥2dW̃L(t),

(7)

with the initial value X(0) = x0 > 0, µ̄ =
(µ1, µ2, · · · , µn)

′.

Definition 1 (Admissible strategy). An investment s-
trategy π(t) is admissible if π(t) satisfies the follow-
ing conditions:

(i) π(t) is progressively Ft− measurable;

(ii)E
(∫ T

t

(
∥π′(t)σ − vλ′∥2

+

(
v

√
1− ∥λ∥2

)2)
dt

)
< ∞;

(iii) For any investment strategy π(t), the SDE (7)
has a pathwise unique solution.

We denote the set of all admissible strategies π(t)
by
∏

= {π(t) : 0 6 t 6 T}, and the investor expect-
s to find an optimal investment strategy to maximize
the expected utility of terminal net wealth. Mathemat-
ically, the problem can be described as the following
optimization problem:

Maximize
π(t)∈Π

E[U(X(T ))], (8)

where U(x) represents utility function and satisfies
the conditions: the first-order derivative U̇(x) > 0

and the second-order derivative Ü(x) < 0.
Due to the optimal investment strategy under the

quadratic utility function is mean-variance effective.
Thus, in this paper we mainly study the optimal in-
vestment strategy for the problem (8) with quadratic
utility function. In utility theory of portfolio selection,
the quadratic utility expression can be written as:

U(x) = x− ηx2, x < 1/(2η), η > 0,

where η is the risk aversion factor.

3 HJB equation and Legendre trans-
form

In this section, we study the problem (8) by ap-
plying dynamic programming principle and Legendre
transform. Firstly, the HJB equation that the value
function satisfies is derived by employing dynamic
programming principle. Then, the dual equation to
the value function is obtained by Legendre transform.
Finally, we solve the dual equation by using variable
change technique and get the explicit expression of
the optimal investment strategy under quadratic utili-
ty function.

The problem (8) is considered to be a class of s-
tochastic optimal control problems, then the value
function H(t, r, x) can be defined as:

H(t, r, x) = sup
π(t)∈Π

E[U(X(T )) |X(t) = x, r(t) = r ],

with boundary condition H(T, r, x) = U(x).
According to the principle of stochastic dynamic

programming, the value function H(t, r, x) can be re-
garded as a continuous solution of the following HJB
equation:

sup
π(t)∈Π

[
Ht + (rx+ π′(t)µ̄− u)Hx

+
1

2

(∥∥π′(t)σ − vλ′∥∥2 + (v√1− ∥λ∥2
)2
)
Hxx

+ a(t)Hr +
1

2

(
b2∥ρ∥2 + b2(1− ∥ρ∥2)

)
Hrr

+ bρ(π′(t)σ − vλ′)Hrx

]
= 0,

(9)
where Ht, Hr,Hrr,Hx,Hxx, Hxr represent the first-
order and second-order partial derivatives of the value
function H(t, r, x) with respect to the variables t, r, x
respectively.

According to the necessary condition of arriving at
the maximum, we obtain the optimal value as follows

π∗(t) = −(σσ′)−1

(
µ̄
Hx

Hxx
+ bσρ

Hrx

Hxx

)
+(σ′)−1λv.

(10)
Letting θ = σ−1µ̄, and putting (10) into (9), we derive

Ht + (rx− u+ θ′vλ)Hx +
1

2
v2(1− ∥λ∥2)Hxx

+ a(t)Hr +
1

2
b2Hrr −

1

2
∥θ∥2 H2

x

Hxx

− 1

2
b2 ∥ρ∥2 H2

rx

Hxx
− bθ′ρ

HxHrx

Hxx
= 0.

(11)
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It is very difficult for us to conjecture the structure
of a solution to the equation (11) under quadratic util-
ity function. So we introduce the following Legendre
transform to derive its dual equation to (11).

Legendre transform can be defined by (referring to
Gao [5]):

Ĥ(t, r, z) = sup{H(t, r, x)− zx},
g(t, r, z) = inf{x|H(t, r, x) > zx+ Ĥ(t, r, z)},

(12)

where z > 0 denotes the dual variable to x. The func-
tion g(t, r, z) and Ĥ(t, r, z) can be seen as the dual
function to H(t, r, x). This paper chooses g(t, r, z) as
the dual function to H(t, r, x).

The relationship between the function Ĥ(t, r, z)
and g(t, r, z) is as follows:

g(t, r, z) = −Ĥz(t, r, z). (13)

Notice that H(T, r, x) = U(x), then at terminal
time T , we define

Ĥ(T, r, z) = sup{U(x)− zx},
g(T, r, z) = inf{x|U(x) > zx+ Ĥ(T, r, z)}.

(14)

So we have

g(T, r, z) = (U̇)−1(z), (15)

where (U̇)−1(z) is taken as the inverse of marginal
utility.

According to the equation (12), we get

Hx(t, r, x) = z,

and we have:

g(t, r, z) = x, Ĥ(t, r, z) = H(t, r, g)− zg,

Referring to the work of Gao[5], we have

Ht = Ĥt, Hx = z,

Hxx = − 1

Ĥzz

, Hr = Ĥr,

Hrr = Ĥrr −
Ĥ2

rz

Ĥzz

, Hxr = −Ĥrz

Ĥzz

.

(16)

Substituting (16) back into (11), then (11) can be writ-
ten as:

Ĥt + rzg + (θ′vλ− u)z − 1

2
v2(1− ∥λ∥2) 1

Ĥzz

+ a(t)Ĥr +
1

2
b2Ĥrr −

1

2
b2(1− ∥ρ∥2)Ĥ

2
rz

Ĥzz

+
1

2
∥θ∥2 z2Ĥzz − bθ′ρzĤrz = 0.

(17)

Differentiating (17) with respect to z and using (13),
we obtain the dual equation

gt − rg + (∥θ∥2 − r)zgz + u− θ′vλ

+
1

2
v2(1− ∥λ∥2)gzz

g2z
+ (a(t)− bθ′ρ)gr

+
1

2
b2(1− ∥ρ∥2)2grgrzgz − g2rgzz

g2z

+
1

2
∥θ∥2 z2gzz − bθ′ρzgrz = 0.

(18)

Although (18) is a nonlinear partial differential e-
quation, the structure of a solution to (18) is easy to
conjecture under quadratic utility function. In the fol-
lowing section, we try our best to solve the equation
(18) and obtain the optimal investment strategy for the
original problem (8).

4 The optimal portfolios

Under quadratic utility function, the boundary con-
dition of (18) should be

g(T, r, z) = (U̇)−1(z) =
1

2η
(1− z).

Thus, assume that a solution to (18) is conjectured as
follows:

g(t, r, z) = f(t, r)z + h(t, r),

f(T, r) = − 1

2η
, h(T, r) =

1

2η
.

(19)

Further, the partial derivatives of g(t, r, z) with re-
spect to t, r, and z are as follows:

gt = ftz + ht, gr = frz + hr,

gz = f, grr = frrz + hrr,

gzz = 0, grz = fr.

(20)
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Plugging (20) into (18), after some simple calculation-
s, we derive

z

[
ft + (∥θ∥2 − 2r)f + (a(t)− 2bθ′ρ)fr +

1

2
b2frr

− b2(1− ∥ρ∥2)f
2
r

f

]
+ ht − rh+ u− θ′vλ

+ (a(t)− bθ′ρ)hr +
1

2
b2hrr

− b2(1− ∥ρ∥2)fr
f
hr = 0.

We can decompose the above equation into the fol-
lowing two equations in order to eliminate the depen-
dence on z:

ft + (∥θ∥2 − 2r)f + (a(t)− 2bθ′ρ)fr

+
1

2
b2frr − b2(1− ∥ρ∥2)f

2
r

f
= 0;

(21)

ht − rh+ u− θ′vλ+ (a(t)− bθ′ρ)hr

+
1

2
b2hrr − b2(1− ∥ρ∥2)fr

f
hr = 0.

(22)

Lemma 2 Assume that a solution to (21) is conjec-
tured as f(t, r) = A(t)eB(t)r, with boundary condi-
tions given by A(T ) = − 1

2η and B(T ) = 0, then we
obtain the following results:

(i) Under the Ho-Lee model: B(t) and A(t) are
determined by (24) and (25), respectively.

(ii) Under the Vasicek model: B(t) and A(t) are
given by (26) and (27), respectively.

Proof. Substituting f(t, r) = A(t)eB(t)r into (18),
then the equation (18) can be written as

A(t)eB(t)r

[
Ȧ(t)

A(t)
+ ∥θ∥2 + (a(t)− 2bθ′ρ)B(t)

+
1

2
b2(2 ∥ρ∥2 − 1)B2(t) + r(Ḃ(t)− 2)

]
= 0.

(23)
(i) Under the Ho-Lee model
In the Ho-Lee model, a(t) is a bounded determin-

istic function about time t and is irrelevant to interest
rate r(t). Thus, the equation (23) can be decomposed
into the following two ordinary differential equations:

Ḃ(t)− 2 = 0, B(T ) = 0;

Ȧ(t)

A(t)
+ ∥θ∥2 + (a(t)− 2bθ′ρ)B(t)

+
1

2
b2(2 ∥ρ∥2 − 1)B2(t) = 0, A(T ) = − 1

2η
.

Solving the above equation, we obtain

B(t) = 2(t− T ), (24)

A(t) = − 1

2η
exp

{∫ T

t

(
∥θ∥2 + (a(t)− 2bθ′ρ)B(t)

+
1

2
b2(2∥ρ∥2 − 1)B2(t)

)
dt

}
. (25)

(ii) Under the Vasicek model
In the Vasicek model, a(t) can be written as a(t) =

k(α− r). Comparing the coefficients on both sides of
the equation (23), we have

Ḃ(t)− kB(t)− 2 = 0, B(T ) = 0;

Ȧ(t)

A(t)
+ ∥θ∥2 + (kα− 2bθ′ρ)B(t)

+
1

2
b2(2 ∥ρ∥2 − 1)B2(t) = 0, A(T ) = − 1

2η
.

Solving the above two equations, we get

B(t) =
2

k
(e−k(T−t) − 1), (26)

A(t) = − 1

2η
exp

{∫ T

t

(
∥θ∥2 + (kα− 2bθ′ρ)B(t)

+
1

2
b2(2∥ρ∥2 − 1)B2(t)

)
dt

}
. (27)

As a result, Lemma 2 is completed. �
Notice that u− θ′vλ is a constant, and is irrelevant

to the variable t. Thus, we have the following lemma.

Lemma 3 Suppose that

h(t, r) = (u− θ′vλ)

∫ T

t
ĥ(s, r)ds+

1

2η
ĥ(t, r),

then the equation (22) can be changed into:

ĥt − rĥ+ (a(t)− bθ′ρ)ĥr +
1

2
b2ĥrr

− b2(1− ∥ρ∥2)fr
f
ĥr = 0, ĥ(T, r) = 1.

(28)

Proof. Introducing the following variational oper-
ator on any function h(t, r):

∇h(t, r) =− rh+ (a(t)− bθ′ρ)hr +
1

2
b2hrr

− b2(1− ∥ρ∥2)fr
f
hr.
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Then (22) can be rewritten as

∂h(t, r)

∂t
+∇h(t, r) + u− θ′vλ = 0. (29)

Considering

h(t, r) = (u− θ′vλ)

∫ T

t
ĥ(s, r)ds+

1

2η
ĥ(t, r),

then we have

∂h(t, r)

∂t
=− (u− θ′vλ)ĥ(t, r) +

1

2η
· ∂ĥ(t, r)

∂t

=(u− θ′vλ)

(∫ T

t

∂ĥ(s, r)

∂s
ds−ĥ(T, r)

)

+
1

2η
· ∂ĥ(t, r)

∂t
,

∇h(t, r) = (u−θ′vλ)

∫ T

t
∇ĥ(s, r)ds+

1

2η
∇ĥ(t, r).

So (29) can be converted into:

(u− θ′vλ)

(∫ T

t

(
∂ĥ(s, r)

∂s
+∇ĥ(s, r)

)
ds

+ 1− ĥ(T, r)

)
+

1

2η

(
∂ĥ(t, r)

∂t
+∇ĥ(t, r)

)
= 0.

Comparing the coefficients, we find that ĥ(t, r) sat-
isfies the following equation:

∂ĥ(t, r)

∂t
+∇ĥ(t, r) = 0, ĥ(T, r) = 1.

As a result, Lemma 3 is completed. �

Lemma 4 Letting ĥ(t, r) = eD1(t)+D2(t)r be the so-
lution to the equation (28), where boundary condition-
s are given by D1(T ) = 0 and D2(T ) = 0, then we
have the following conclusions:

(i) Under the Ho-Lee model: D2(t) and D1(t) are
determined by (31) and (32), respectively.

(ii) Under the Vasicek model: D2(t) and D1(t) are
given by (33) and (34), respectively.

Proof. Putting ĥ(t, r) = eD1(t)+D2(t)r in the equa-
tion (28) yields

eD1(t)+D2(t)r

[
Ḋ1(t) +

(
a(t)− bθ′ρ− b2(1− ∥ρ∥2)

∗B(t)

)
D2(t)+

1

2
b2D2

2(t)+r(Ḋ2(t)−1)

]
= 0. (30)

(i) Under the Ho-Lee model
Comparing the coefficients on both sides of the e-

quation (30), we get the following two ordinary dif-
ferential equations:

Ḋ2(t)− 1 = 0, D2(T ) = 0;

Ḋ1(t) +

(
a(t)− bθ′ρ− b2(1− ∥ρ∥2)B(t)

)
D2(t)

+
1

2
b2D2

2(t) = 0, D1(T ) = 0.

Solving the above equations, we derive

D2(t) = (t− T ), (31)

D1(t) =

∫ T

t

((
a(t)− bθ′ρ− b2(1− ∥ρ∥2)B(t)

)
×D2(t) +

1

2
b2D2

2(t)

)
dt. (32)

where B(t) = 2(t− T ).
(ii) Under the Vasicek model
In the Vasicek model, a(t) can be expressed as

a(t) = k(α − r). So, the equation (30) can be de-
composed into

Ḋ2(t)− kD2(t)− 1 = 0, D2(T ) = 0;

Ḋ1(t) +

(
kα− bθ′ρ− b2(1− ∥ρ∥2)B(t)

)
D2(t)

+
1

2
b2D2

2(t) = 0, D1(T ) = 0.

After some simple calculations, we have

D2(t) =
1

k
(e−k(T−t) − 1); (33)

D1(t) =

∫ T

t

((
kα− bθ′ρ− b2(1− ∥ρ∥2)B(t)

)
×D2(t) +

1

2
b2D2

2(t)

)
dt. (34)

where B(t) = 2
k (e

−k(T−t) − 1).
Therefore, we complete the proof of Lemma 4. �
Further, according to the conclusions of (16), (19)

and Lemma 2, we get

Hx

Hxx
=z(−Ĥzz) = zgz

=zf = g − h = x− h,

Hxr

Hxx
=Ĥrz = −gr = −(frz + hr)

=−B(t)(x− h)− hr.

In short, the optimal investment strategies for the
problem (8) under quadratic utility function can be
summarized as the following conclusion.
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Theorem 5 Provided that quadratic utility function is
expressed as U(x) = x − ηx2, where x < 1

2η and
η > 0, then the optimal investment strategy is given
by

π∗(t) =− (σσ′)−1

(
µ̄(X(t)− h) + (σ′)−1λv

− bρσ(B(t)(X(t)− h) + hr)

)
,

(35)

where,

h = h(t, r) =(u− θ′vλ)

∫ T

t
eD1(s)+D2(s)r(s)ds

+
1

2η
eD1(t)+D2(t)r(t),

hr =(u− θ′vλ)

∫ T

t
D2(s)e

D1(s)+D2(s)r(s)ds

+
1

2η
D2(t)e

D1(t)+D2(t)r(t).

And we have:
(i) Under the Ho-Lee model: D2(t) and D1(t) are

determined by (31) and (32), respectively, B(t) =
2(t− T ).

(ii) Under the Vasicek model: D2(t) and D1(t) are
determined by (33) and (34), respectively, B(t) =

2(e−k(T−t) − 1)
/
k.

Remark 6 From (35), we find that the optimal invest-
ment strategy for the problem (8) with stochastic in-
terest rate and random liability can be decomposed
into three parts:

− (σσ′)−1µ̄(X(t)− h),

(σσ′)−1bσρ(B(t)(X(t)− h) + hr),

(σ′)−1λv,

where, −(σσ′)−1µ̄(X(t) − h) is determined by the
parameters of the stock, but is affected by the pa-
rameters of interest rate and the liability. And
(σσ′)−1bσρ(B(t)(X(t)− h) + hr) influenced by the
stock and the liability factor is determined by the s-
tochastic interest rate model. (σ′)−1λv is determined
by the parameters of the liability model, on which the
parameter of the stock has some impact.

In order to compare Theorem 5 with the conclu-
sions of existing literatures, we analyze some special
cases as follows.

Special case 1. If we don’t consider liability factor,
that is, u = v = λi = 0, i = 1, 2, . . . , n, then the

optimal policy for the problem (8) is given by

π∗(t) =− (σσ′)−1

(
µ̄(X(t)− h)

− bσρ(B(t)(X(t)− h) + hr)

)
,

(36)

where

h = h(t, r) =
1

2η
eD1(t)+D2(t)r(t),

hr =
1

2η
D2(t)e

D1(t)+D2(t)r(t)

and we have:
(i) Under the Ho-Lee model: D2(t) and D1(t) are

given by (31) and (32) respectively, and B(t) = 2(t−
T ).

(ii) Under the Vasicek model: D2(t) and D1(t)
are determined by (33) and (34) respectively, and
B(t) = 2(e−k(T−t) − 1)

/
k.

Special case 2. If interest rate is a constant, that is
to say, we have: a(t) = 0, b = 0, k = 0, ρj = 0,
j = 1, 2, . . . , n, then we get

D1(t) = 0, D2(t) = t− T.

So the optimal strategy of the problem (8) is given
by

π∗(t) = −(σσ′)−1µ̄(X(t)− h) + (σ′)−1λv, (37)

where

h = h(t, r) = (u−θ′vλ)

∫ T

t
e−r(T−t)dt+

1

2η
e−r(T−t).

Special case 3. If there is no liability and interest
rate is a constant , then the optimal investment policy
of the problem (8) is given by

π∗(t) = −(σσ′)−1µ̄

(
X(t)− 1

2η
e−r(T−t)

)
.

5 Numerical analysis

In order to analyze the effect of interest rate and
liability on the optimal investment strategy, we pro-
vide a numerical example in this section. We assume
that the financial market consists of one risk-free as-
set and two risky assets. Throughout this section, un-
less otherwise stated, the basic parameters are giv-
en by as follows: Under the Ho-Lee model, a(t) =
0.035, b = 0.1. Under the Vasicek model, k = 0.5,
α = 0.07, and b = 0.1. The initial value of interest
rate r(0) = 0.05, ρ = (0.7, 0.5)′. In the liability
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model, u = 0.1, v = 0.2, and λ(t) = (0.4, 0.6)′.
For the model of the stock price, µ = (0.13, 0.20)′,

σ =

(
0.35 0.48
0.48 0.45

)
. Other parameters are as fol-

lows: t = 0, T = 1, x0 = 100, and η = 1/1000. In
the following pictures, we change one parameter and
keep other parameters fixed, and analyze the impact
of the main parameters on the optimal investment pol-
icy. The Y-axis in Figure 1-4 represents the sum of
the amount invested in two stocks, which is denoted
by
∑2

i=1 πi(t).
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Figure 1: The impact of η on
∑2

i=1 πi(t).
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Figure 2: The impact of b on
∑2

i=1 πi(t).

From Fig.1-4, we can draw some instructive and
valuable conclusions as follows.

(i) Both in the Ho-Lee model and in the Vasicek
model,

∑2
i=1 πi(t) increases with respect to (w.r.t) the

parameters b, u and v respectively. From the econom-
ic implications of b, u and v, this conclusion is obvi-
ous. In fact, the parameter b stands for the volatility of
interest rate. It implies that a larger value of b means
the more risk resulted from interest rate, which leads
to the less amount invested in the risk-free asset. Cor-
respondingly, the more money is invested in the two s-
tocks. When the value of u is increasing, the expected
value of liability is ascending. In order to asset hedge,
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Figure 3: The impact of u on
∑2

i=1 πi(t).

the investor should hold more shares in the two stock-
s. The parameter v represents the volatility of liability.
A greater value of v displays the more risks resulted
from the liability. In order to hedge the risks from the
liability, the investor should invest more money in the
two stocks. On the other hand, the amount invested in
risky assets in the liability setting is much larger than
that in the no-liability setting.

(ii) Both in the Ho-Lee model and in the Vasicek
model,

∑2
i=1 πi(t) decreases w.r.t the parameter η.

Under quadratic utility, the risk aversion coefficien-
t of an investor is denoted by 2ηx/(1− 2ηx). When
the value of η is increasing, the risk aversion agree
of investors is increasing. It displays that an investor
would like to investing more amount of wealth in the
risk-free asset and investing less amount in the risky
assets.

(iii)
∑2

i=1 πi(t) is very sensitive to the parameter
b and η, while isn’t very sensitive to the parameter u
and v.

(iv) Based on the given numerical example, we
come to the conclusion that when η is less than about
0.002, the amount invested in the stocks under the Ho-
Lee model is larger than that under the Vasicek model.
When η > 0.002, the conclusion is opposite to it.

0.5 1.0 1.5 2.0

36

38

40

42

44

v

su
m

of
tw

o
st

oc
ks

Vasicek

Ho-Lee

Figure 4: The impact of v on
∑2

i=1 πi(t).
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6 Conclusions

In the practice environment of investments, interest
rate should be a stochastic process which satisfies a
certain term structure. In this paper, we assume that
the dynamic behavior of interest rate can be described
by the Ho-Lee model or the Vasicek model, and s-
tudy the optimal investment problem with stochastic
interest rate dynamics in the quadratic utility frame-
work. The liability process is assumed to be driven
by Brownian motion with drift and is generally cor-
related with stock price dynamics. By applying dy-
namic programming principle and Legendre transfor-
m, the closed-form solutions to the optimal invest-
ment strategies with quadratic utility preference are
obtained. We also present a numerical example to an-
alyze the influence of market parameters on the op-
timal investment strategies, which demonstrates that
when η < 0.002, the amount invested in the stocks
under the Ho-Lee model is larger than that under the
Vasicek model, and the amount invested in risky as-
sets in the liability setting is much larger than that in
the no-liability setting. Theoretically, the results in
this paper pave the way for solving the mean-variance
portfolio selection problems with random liability and
stochastic interest rate.

In further research, we can study some more
sophisticated ALM problems in the mean-variance
framework, for example, the ALM problem with in-
terest rate and inflation risk, the ALM problem with
stochastic interest rate and stochastic volatility, or
the ALM problem with interest rate and Markovian
regime-switching. It is very difficult for us to solve
these problems at this stage. We leave these problems
to future research.
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